数量关系之抽屉原理问题知识框架
[!--smalltext--]
数学运算问题一共分为十四个模块,其中一块是抽屉原理问题。
公务员考试中,抽屉原理问题通常与其他问题相结合来进行考查,一般只有抽屉原理1、抽屉原理2和逆用抽屉原理三种类型。解抽屉原理问题的常用的方法是遵循最差原则,即考虑最差情况,其本质都是抽屉原理问题的基本原理。无论“抽屉”大小、种类怎么变化,同学只要牢牢把握这三种类型和解题原则,就能轻松搞定抽屉原理问题。
核心点拨
1、题型简介
抽屉原理的一般含义:假如有n+l或多于n+l个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。在公务员考试数学运算中,考查抽屉原理问题时,题干通常有“至少……,才能保证……”。掌握抽屉原理问题,可以帮助同学们解决“至少……”的问题。
2、核心知识
(1)抽屉原理1:
将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉),一般遵循最差原则,即考虑极端情况,最差的情况。从各类公务员考试真题来看,“考虑最差情况”这一方法的使用广泛而且有效。
(2)抽屉原理2:
将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可理解为至少有m+1件物品在同一个抽屉)
(3)逆用抽屉原理
即是对抽屉原理2的逆向思维,从“抽屉物品数量件数不少于m+1”推出m,然后根据公式,得出抽屉数量n。
很赞哦! ()